hyperelliptic integral - translation to ρωσικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:     

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

hyperelliptic integral - translation to ρωσικά

TRADITIONAL NAME FOR AN EVERYWHERE-REGULAR (OR HOLOMORPHIC) DIFFERENTIAL 1-FORM
Differential of the second kind; Differential of the third kind; Hyperelliptic integral; Differentials of the first kind; Abelian differential; Abelian Differential; Holomorphic differential; Hyper-elliptic integral; Hyper-elliptic integrals; Integral of the first kind; Integral of the second kind

hyperelliptic integral         

общая лексика

гиперэллиптический интеграл

holomorphic differential         

математика

голоморфный дифференциал

Abelian differential         

математика

абелев дифференциал

Βικιπαίδεια

Differential of the first kind

In mathematics, differential of the first kind is a traditional term used in the theories of Riemann surfaces (more generally, complex manifolds) and algebraic curves (more generally, algebraic varieties), for everywhere-regular differential 1-forms. Given a complex manifold M, a differential of the first kind ω is therefore the same thing as a 1-form that is everywhere holomorphic; on an algebraic variety V that is non-singular it would be a global section of the coherent sheaf Ω1 of Kähler differentials. In either case the definition has its origins in the theory of abelian integrals.

The dimension of the space of differentials of the first kind, by means of this identification, is the Hodge number

h1,0.

The differentials of the first kind, when integrated along paths, give rise to integrals that generalise the elliptic integrals to all curves over the complex numbers. They include for example the hyperelliptic integrals of type

x k d x Q ( x ) {\displaystyle \int {\frac {x^{k}\,dx}{\sqrt {Q(x)}}}}

where Q is a square-free polynomial of any given degree > 4. The allowable power k has to be determined by analysis of the possible pole at the point at infinity on the corresponding hyperelliptic curve. When this is done, one finds that the condition is

kg − 1,

or in other words, k at most 1 for degree of Q 5 or 6, at most 2 for degree 7 or 8, and so on (as g = [(1+ deg Q)/2]).

Quite generally, as this example illustrates, for a compact Riemann surface or algebraic curve, the Hodge number is the genus g. For the case of algebraic surfaces, this is the quantity known classically as the irregularity q. It is also, in general, the dimension of the Albanese variety, which takes the place of the Jacobian variety.

Μετάφραση του &#39hyperelliptic integral&#39 σε Ρωσικά